microraman_0

Micro-Raman Spectroscopy

Raman spectroscopy is based on a photonic process in which the incident radiation is dis-persed by the sample. This latter is perturbed leading to vibrational and rotational transitions. In general, the Raman spectrum is interpreted like a vibrational one, providing information very similar to the infrared spectroscopy, although the Raman active vibrations are not always the same as those excited with infrared radiation. A Raman vibration mode is active if there is a change of polarizability of the chemical bonds or the considered molecule, which in turn results in the generation of induced dipolar momentam. Its application fields are very broad: semiconductors, carbon compounds (graphite, diamond, nanotubes, fibers…), catalysts, pigments, etc.
 

Reserva on-line

Raman spectroscopy is based on a photonic process in which the incident radiation is dis-persed by the sample. This latter is perturbed leading to vibrational and rotational transitions. In general, the Raman spectrum is interpreted like a vibrational one, providing information very similar to the infrared spectroscopy, although the Raman active vibrations are not always the same as those excited with infrared radiation. A Raman vibration mode is active if there is a change of polarizability of the chemical bonds or the considered molecule, which in turn results in the generation of induced dipolar momentam. Its application fields are very broad: semiconductors, carbon compounds (graphite, diamond, nanotubes, fibers…), catalysts, pigments, etc.

Available Equipment

  • LabRAM Horiba Jobin Yvon equipped with a confocal microscope and 3 excitation lasers (785 nm red, 532 nm green, and 325 nm UV)

 

Services
External
OPI / AGE / Universidades Others
 Micro-Raman Spectroscopy
52,60 (€/hour)
57,61 (€/hour)